دسته بندی کیفیتی پسته با استفاده از تکنیک های پردازش تصویر

این مقاله به بررسی و دسته بندی کیفیتی پسته با استفاده از تکنیک های پردازش تصویر می پردازد


خرید و دانلود دسته بندی کیفیتی پسته  با استفاده از تکنیک های پردازش تصویر

یک الگوریتم مبتنی بر k نزدیک ترین همسایه برای دسته بندی چند برچسبی

در این پژوهش تلاش شده است تا الگوریتمی مبتنی بر k نزدیکترین همسایه برای دستهبندی چند برچسبی ارائه شود. ابتدا مروری خواهد شد بر یادگیری چند برچسبی ) Multi-Label Learning ( و اینکه چرا به این دسته از الگوریتمهای یادگیری
نیاز وجود دارد. همچنین مثالهایی از مسائلی که با استفاده از این نوع یادگیری و دستهبندی حل میشوند ذکر خواهد شد. در
ادامهی بحث الگوریتم اصلی این مقاله توضیح داده خواهد شد. این الگوریتم با نام اختصاری ML-kNN نامگذاری شده است و به
معنای k نزدیکترین همسایهی چند برچسبی ) Multi-Label k-Nearest Neighbor ( میباشد. سپس آزمایشات حاصل از
اجرای این الگوریتم و مقایسهی آن با سایر الگوریتمهای موجود در زمینهی دستهبندی دادههای چند برچسبی مورد بررسی قرار
میگیرد و در انتها نیز نتایج حاصل بیان خواهد شد.


خرید و دانلود یک الگوریتم مبتنی بر k نزدیک ترین همسایه برای دسته بندی چند برچسبی

استفاده از روشهای داده کاوی برای پیش بینی سطح خسارت مشتریان بیمه بدنه اتومبیل

عنوان پایان نامه: استفاده از روشهای داده کاوی برای پیش بینی سطح خسارت مشتریان بیمه بدنه اتومبیل

فرمت فایل: word

تعداد صفحات: 40

شرح مختصر: امروزه نقش مشتریان از حالت پیروی از تولید کننده ،به هدایت سرمایه گذاران ، تولید کنند گان و حتی پژوهش گران و نوآوران مبدل گشته است ،به همین دلیل سازمان ها نیاز دارند مشتریان خود را بشناسند و برای آنان برنامه ریزی کنند .تاکنون از برخی روش های آماری و یادگیری ماشینی برای این منظور استفاده شده است که البته این روش ها به تنهایی دارای محدودیت هایی هستند که در این پژوهش سعی شده است تا با بهره گیری از روش های مختلف داده کاوی تا حد ممکن این محدودیت ها از بین برده و بر طبق آن ،چارچوبی برای شناسایی مشتریان بیمه بدنه اتومبیل ارایه شود . در واقع هدف این است تا مشتریانی را که بیشتر به یکدیگر شبیه هستند دسته بندی و با استفاده از این دسته ها و ویژگی های آن ،میزان خطر پذیری هر دسته را پیش بینی کرد . حال با استفاده از این معیار (میزان خطر پذیری هر دسته) و نوع بیمه نامه مشتری می توان میزان خسارت او را پیش بینی کرد که این معیار می تواند کمک شایانی برای شناسایی مشتریان و سیاست گذاری های تعرفه بیمه نامه باشد . برای این منظور، از روش داده کاوی ،درخت تصمیم برای ایجاد مدل پیش بینی خطر پذیری مشتریان در صنعت بیمه استفاده شده است .فن درخت تصمیم برای این منظور نتایج بهتری را به دست اورده است.

فهرست مطالب

چکیده1

1-1- مقدمه. 2

1-2- تاریخچه داده کاوی.. 2

1-3- روشهای پیشین و فعالیت های مرتبط با پژوهش... 4

1-4- مدیریت ذخیره سازی و دستیابی اطلاعات.. 5

1-5- ساختار بانک اطلاعاتی سازمان :7

1-6- داده کاوی :((Data Mining. 7

1-6-1- داده کاوی چیست؟. 7

1-6-2- مفاهیم پایه در داده کاوی.. 8

1-6-3- تعریف داده کاوی.. 8

1-6-4- برخی از این تعاریف عبارتند از :8

1-6-4-1- مراحل فرایند کشف دانش از پایگاه داده ها9

1-7- تفسیر نتیجه. 9

1-8- انبارش داده ها9

1-9- انتخاب داده ها10

1-10- تبدیل داده ها10

1-11- عملیات های داده کاوی.. 10

1-11-1- مدل سازی پیشگویی کننده11

1-11-2- تقطیع پایگاه داده ها12

1-11-3- تحلیل پیوند. 12

1-11-4- تشخیص انحراف.. 12

1-12- الگوریتم های داده کاوی.. 13

1-12-1- دسته بندی.. 14

1-12-2-رگرسیون. 15

1-12-3- سری‌های زمانی.. 16

1-12-4- پیش بینی.. 16

1-12-5- تکنیک های روش توصیفی.. 16

1-12-6- قوانین انجمنی.. 16

1-12-7- خلاصه سازی (تلخیص)17

1-12-8- مدل‌سازی وابستگی (تحلیل لینک)17

1-12-9- خوشه بندی.. 18

1-12-9-1- معیارهای ارزیابی الگوریتم‌های خوشه بندی.. 18

1-12-9-2- طبقه بندی روش‌های خوشه بندی.. 19

1-12-10- الگوریتم Apriori19

1-12-11- الگوریتم K-Means20

1-12-11- 1-گام ‌های الگوریتم k-means20

1-12-11-2- ویژگی‌های الگوریتم k-means20

1-12-11-3- رفع اشکالات الگوریتم k-means:21

1-12-12- شبکه های عصبی.. 21

1-12-13- درخت تصمیم. 22

1-13- روش پیشنهادی.. 23

1-14- جامع آماری و نمونه آماری.. 23

1-15- مراحل پژوهش... 23

1-16-پیش پردازشداده ها25

1-17- معرفی مشخصه ها26

1-18- مشخصه هدف.. 27

1-19- انتخاب مشخصه. 27

1-20- نرم افزارهای داده کاوی.. 27

1-21- پیاده سازی مدل های داده کاوی.. 30

1-21-1- درخت تصمیم. 30

1-21-2- تحلیل درخت تصمیم. 30

منابع 34

شکل 1-1- دسته بندی پژوهش ها در زمینه ی داده کاوی.. 4

شکل 1-2- نمودار پردازش اطلاعات.. 6

شکل1-3- مدیریت داده ها6

شکل 1-4- ساختار بانک اطلاعاتی.. 7

شکل 1-5- تجزیه و تحلیل KDD. 8

شکل 1-6- یک شبکه عصبی با یک لایه پنهان. 22

شکل 1-7- مراحل پژوهش... 25

شکل 1-8- درخت تصمیم. 31

شکل 1-9- درخت تصمیم. 32

شکل 1-10- درخت تصمیم 33

 


خرید و دانلود استفاده از روشهای داده کاوی برای پیش بینی سطح خسارت مشتریان بیمه بدنه اتومبیل

پـــایان نامه روش های دسته بندی جریان داده

چکیده

حجم بزرگ داده ها به تنهایی به مدیران سازمان ها در تصمیم سازی و تصمیم گیری هیچ کمکی نمی کند، بلکه باعث سردرگمی مدیران سازمان ها نیز می شود.بنابراین مدیریت داده های خام و تبدیل داده های خارجی و داخلی سازمان به اطلاعات و دانش با استفاده از تکنیک های گوناگون،نقش اساسی و محوری دارد.از تکنیک های معروف در این زمینه داده کاوی است،که می تواند بر روی بانک اطلاعاتی انجام شود و دانش مورد نیاز را بدست آورد.در فصل اول به بررسی این مفهوم پرداختیم. کاوش خوشه ها نیز یکی از تکنیک های حائز اهمیت در زمینه رو به رشد،معروف به داده کاوی اکتشافی می باشد که در رشته های گوناگون مهندسی و علمی از قبیل زیست شناسی،روان شناسی،پزشکی،بازاریابی،کامپیوتر و نقشه برداری ماهواره ای به کار گرفته شده است. این مفهوم در فصل های سوم و چهارم دنبال شده است.در فصل سوم به یکی از الگوریتم های خوشه بندی به نام CStree پرداخته شده و نقاط ضعف این الگوریتم نیز مطرح شده است .تحلیل خوشه ها،اطلاعات را بوسیله یک ساختار اساسی مختصر بدو شکل گروه بندی تنها یا گروه بندی سلسله مراتبی سازماندهی می نماید.خوشه بندی ،ابزاری برای اکتشاف ساختارهایی از درون داده هاست که نیاز به هیچ فرضی از آنها نیست.این روش در هوش مصنوعی و شناسایی الگو،یادگیری بدون ناظر نامیده می شود.الگوریتم های خوشه بندی گوناگونی برای استخراج دانش از درون مجموعه اطلاعات مختلف وجود دارد.اما عموما این الگوریتم ها حساس به داده های مورد آزمایش و برخی پارامترهای اولیه می باشند،لذا نتایج حاصل از آنها وابسته به ساختار داده ها می باشد.تاکنون الگوریتمی ارائه نشده است که بتواند هر گونه ساختار داده ای را استخراج نماید. یکی دیگر از پدیده های نوظهور در دنیای اطلاعات،داده های جریانی می باشند.این پدیده که در فصل چهارم مطرح شده است،اشاره به حجم وسیعی از اطلاعات انباشته شده دارد که محدودیت های فراوانی برای پردازش ایجاد کرده اند.اندازه این داده ها بیش از حافظه اصلی،یکی از این موانع می باشد.لذا می بایست الگوریتم های جدیدی برای برخورد با این گونه داده ها توسعه یابند

 

تعداد صفحات 112 word

 

 

فهرست مطالب

تقدیم به: 3

تقدیر و تشکر. 4

فصل اول مقدمه ای بر داده کاوی. 1

1-1 مقدمه 2

1-2عامل مسبب پیدایش داده کاوی. 2

1-3داده کاوی و مفهوم اکتشاف دانش (K.D.D) 3

1-3-1 تعریف داده کاوی. 5

2-3-1 فرایند داده‌کاوی. 6

1-3-3 قابلیتهای داده کاوی. 7

4-3-1 چه نوع داده‌هایی مورد کاوش قرار می گیرند؟ 8

4-1 وظایف داده کاوی. 9

1-4-1 کلاس بندی. 10

2-4-1 مراحل یک الگوریتم کلاس‌بندی. 11

3-4-1 انواع روش‌های کلاس‌بندی. 11

1-3-4-1 درخت تصمیم. 12

1-1-3-4-1 کشف تقسیمات.. 13

2-1-3-4-1 دسته بندی با درخت تصمیم. 15

3-1-3-4-1 انواع درخت‌های تصمیم. 17

4-1-3-4-1 نحوه‌ی هرس کردن درخت.. 17

2-3-4-1 بیزی. 18

1-2-3-4-1 تئوری بیز. 20

2-2-3-4-1 دسته بندی ساده بیزی. 22

4-4-1 ارزیابی روش‌های کلاس‌بندی. 28

4-1-6 انواع روش‌های پیش بینی. 29

1-4-6-1 رگرسیون. 29

1-4-6-1-1 رگرسیون خطی. 29

1-4-6-1-2 رگرسیون منطقی. 31

1-4-7 تخمین. 32

فصل دوم خوشه بندی. 34

2 1-تعریف فرایند خوشه‌بندی. 35

2-2 روش ها و الگوریتم‌های خوشه‌بندی. 36

2-3 روش و الگوریتم سلسله مراتبی. 37

2 3-1-روش های سلسله‌مراتبی. 37

2 3-2-الگوریتم های سلسله مراتبی. 38

2-3-3- الگوریتم خوشه بندی single-linkage. 39

2 3-4-الگوریتم‌های تفکیک... 45

3-5-2روش‌های متکی برچگالی. 46

3-7-2 روش‌‌های متکی بر مدل. 47

فصل سوم خوشه بندی CS tree. 48

3-1مقدمه 49

3-2 مروری بر روش های خوشه بندی جریان داده 50

3-3 خوشه بندی توری جریان داده 52

3-1-3 مروری بر روش خوشه بندی توری CS tree. 53

3-2- 3 بررسی نقاط ضعف الگوریتم CS tree. 56

3-4 الگوریتم پیشنهادی. 60

3-1-4 بازتعریف مفهوم همسایگی و رفع مشکل تقسیم بی معنی خوشه ها 63

3-5 اصلاح روند بروز رسانی خوشه ها 66

3-6 اصلاح ساختار نمایش خوشه ها 67

فصل چهارم جریان داده و مدل های ان. 69

4-1 مقدمه 70

4-2 کاربردهای داده های جریانی. 71

4-2-1 شبکه های حسگر. 71

4-2-2 تحلیل ترافیک شبکه 72

4-2-3 محرک های مالی. 73

4-2-4 تحلیل تراکنش ها 73

4-3 مدل داده های جریانی. 74

4-4 زیربنای نظری. 75

4-4-1 تکنیک های مبتنی بر داده 76

4-4-1-1 نمونه برداری. 76

4-4-1-2 پراکنده ساختن بار 77

4-4-1-3 طراحی اولیه 77

4-4-1-4 ساختمان داده خلاصه 78

4-4-1-5 انبوه سازی. 78

4-4-2 تکنیک های مبتنی بر وظیفه 78

4-4-2-1 الگوریتم های تخمین. 79

4-4-2-2 الگوریتم های مبتنی بر پنجره 79

4-4-2-3 الگوریتم های دانه دانه سازی نتایج. 80

4-5 خوشه بندی داده های جریانی. 80

4-5-1 بهبود روش های سنتی. 81

4-5-1-1 الگوریتم CLARANS. 82

4-5-1-2 الگوریتم BIRCH.. 84

4-5-2 ظهور تکنیک های جدید. 87

4-5-2-1 الگوریتم مبتنی بر چگالی DBSCAN.. 87

4-5-2-2 الگوریتم مبتنی بر گریدSTING.. 90

4-6 بحث در مورد الگوریتم ها 93

4-6-1 ایا توسعه روش های سنتی درست است؟ 93

4-6-2 روش های جدید چه پیشنهاداتی دارند؟ 94

منابع. 96

 

فهرست اشکال

شکل 1-1 فرآینده داده کاوی.. 7

شکل1-2 نمونه یک درخت تصمیم.. 13

شکل 1-3 یک تقسیم بندی خوب ، درجه خلوص را برای فرزندان افزایش می دهد. 15

شکل 3-1 تقسیم خوشه های با معنی به زیر خوشه های بی معنی.. 58

شکل3-2 خطاهای روش Cs tree در ترکیب خوشه های یک بعدی و ایجاد خوشه های چند بعدی- قسمت A خطا در تعداد خوشه ها ، قسمت B خطا در شکل خوشه ها، قسمت C خطا در مرز خوشه ها59

شکل3 -3 روی هم افتادگی خوشه ها در بروز رسانی به روش Cs tree. 60

شکل 4-2 الگوریتم خوشه بندیCLARA.. 82

شکل 4-3 الگوریتم خوشه بندیCLARANS . 84

شکل 4-4 الگوریتم خوشه بندیBIRCH.. 86

شکل 4-6 الگوریتم خوشه بندی.STING.. 92

 


خرید و دانلود پـــایان نامه روش های دسته بندی جریان داده

دسته بندی تکنیک های تصمیم گیری چند معیاره گسسته MADM

چکیده:

در این تحقیق سعی بر این است که دسته بندی جدیدی از تکنیک های تصمیم گیری چند معیاره گسسته (MADM[1] ) ارائه شود. در این راستا ابتدا، مباحث مقیاس دو قطبی فاصله ای‌، بی مقیاس کردن، ارزیابی اوزان برای شاخص ها و MADM فازی بیان شده تا مطالب فصل های بعدی مفهوم تر شود. بر پایه این مقدمات، تکنیک های MADM کلاسیک مورد بررسی قرار گرفته و بدین منظور، دسته بندی ذکر شده در کتاب «تصمیم گیری های چند معیاره» تالیف دکتر اصغرپور مرور می شود که بر اساس این چشم انداز تکنیک های MADM کلاسیک به دو دسته عمده تقسیم می شوند: جبرانی و غیرجبرانی.

با توجه به اینکه در این روشها، مقادیر ماتریس تصمیم گیری اعداد قطعی (غیر فازی) هستند، مجموعه این روشها، «تکنیک های MADM کلاسیک» خوانده می شود.

پس از بررسی تکنیک های MADM کلاسیک، سعی شد، متدهای جدید MADM شناسایی و بررسی شود که نتیجه این تحقیقات و بررسی ها در فصل سوم آورده شده است.

با توجه به اینکه هدف از این تحقیق ارائه دسته بندی های جدیدی از تکنیک های MADM است، این تکنیک ها بررسی و در نهایت، 7 نوع دسته بندی مختلف ارائه و توجیه شده است.

 

تعداد صفحات 135 word

 

 

فهرست:

مقدمه. 1

فصل اول. 4

مقیاس دو قطبی فاصله ای- 5

بی مقیاس کردن- 5

بی مقیاس کردن با استفاده از نرم 6

بی مقیاس کردن خطی- 6

بی مقیاس کردن فازی- 7

ارزیابی اوزان (Wj) برای شاخص ها 7

تکنیک آنتروپی- 7

روش LINMAP- 8

روش کمترین مجذورات وزین شده 8

تکنیک بردار ویژه 10

MADM فازی- 11

تعریف زیرمجموعه فازی- 11

روشهای رتبه بندی فازی Ui (فازی) 19

رتبه بندی با به کارگیری درجه بهینگی- 19

روش باآس-کواکرناآک- 19

روش بالدوین- 21

رتبه بندی با به کارگیری فاصله همینگ-- 24

رتبه بندی توسط مقاطع - 24

روش آدامو- 25

روش باکلی- 25

روش مابوچی- 25

رتبه بندی فازی با روش لفظی- 28

فصل دوم. 29

تکنیک های MADM کلاسیک-- 30

مدل های غیر جبرانی- 30

روش تسلط- 32

روش ماکسی مین- 32

روش ماکسی ماکس-- 32

روش رضایت بخش شمول- 33

روش رضایت بخش خاص-- 34

روش لکسیکوگراف- 34

روش نیمه لکسیکوگراف- 35

روش حذف- 35

روش پرموتاسیون- 36

روش رتبه ای از پرموتاسیون- 37

مدل های جبرانی- 38

زیرگروه نمره گذاری و امتیازدهی- 38

روش مجموع ساده وزین (SAW) 38

روش مجموع وزین و رده بندی شده 39

روش مجموع ساده وزین با کنش متقابل- 40

زیرگروه سازشی- 43

روش LINMAP- 43

روش TOPSIS- 46

روش MRS- 49

روشMDS- 51

زیرگروه هماهنگ-- 53

روش ELECTRE- 54

روش تخصیص خطی- 56

روش AHP- 58

AHP گروهی- 60

ساختار غیر رده ای و توام با بازخور 60

فصل سوم. 64

تکنیک های جدید MADM-- 65

روش های فازی با مجموع وزین- 65

روش باآس-- 66

روش کواکرناآک- 67

روش دوبوس-- 68

روش چنگ-- 70

روش بونیسون- 71

استفاده از AHP به صورت فازی- 72

روش باکلی- 73

TOPSIS فازی- 77

ELECTRE GD- 79

ELECTRE TRI 83

FMADM برای GDM-- 87

TOPSIS برای GDM-- 95

GRA (Grey Relational Analysis) 97

AIRM-- 99

رویکرد ER (Evidential Reasoning) 100

DS-AHP- 111

MP-MADM-- 112

فصل چهارم. 116

دسته بندی تکنیک های MADM-- 117

دسته بندی براساس نوع اطلاعات دریافتی از DM-- 118

دسته بندی براساس نوع کاربرد روش-- 121

دسته بندی براساس فازی و غیر فازی بودن- 123

دسته بندی براساس تعداد DM-- 125

دسته بندی بر مبنای قطعی یا احتمالی بودن اطلاعات-- 128

دسته بندی براساس کامل یا ناقص بودن اطلاعات ورودی- 129

دسته بندی براساس تعداد دوره های تصمیم گیری- 131

منابع. 133

 


خرید و دانلود دسته بندی تکنیک های تصمیم گیری چند معیاره گسسته MADM