پایان نامه داده کاوی Data Mining

چکیده:

در دو دهه قبل توانایی­های فنی بشر برای تولید و جمع­آوری داده‌ها به سرعت افزایش یافته است. عواملی نظیر استفاده گسترده از بارکد برای تولیدات تجاری، به خدمت گرفتن کامپیوتر در کسب­و­کار، علوم، خدمات­ دولتی و پیشرفت در وسائل جمع­آوری داده، از اسکن کردن متون و تصاویر تا سیستمهای سنجش از دور ماهواره­ای، در این تغییرات نقش مهمی دارند.

بطور کلی استفاده همگانی از وب و اینترنت به عنوان یک سیستم اطلاع رسانی جهانی ما را مواجه با حجم زیادی از داده و اطلاعات می‌کند. این رشد انفجاری در داده‌های ذخیره شده، نیاز مبرم وجود تکنولوژی­های جدید و ابزارهای خودکاری را ایجاد کرده که به صورت هوشمند به انسان یاری رسانند تا این حجم زیاد داده را به اطلاعات و دانش تبدیل کند. داده­کاوی به عنوان یک راه حل برای این مسائل مطرح می باشد. در یک تعریف غیر رسمی داده­کاوی فرآیندی است، خودکار برای استخراج الگوهایی که دانش را بازنمایی می­کنند، که این دانش به صورت ضمنی در پایگاه داده­های عظیم، انباره­داده و دیگر مخازن بزرگ اطلاعات، ذخیره شده است.

به لحاظ اینکه در چند سال اخیر مبحث داده­کاوی و اکتشاف دانش موضوع بسیاری از مقالات و کنفرانسها قرار گرفته و نرم­افزار­های آن در بازار به شدت مورد توجه قرار گرفته، از اینرو در مقاله سعی بر آن شده تا گذری بر آن داشته باشیم.

در این مقاله درفصل مروری بر داده­کاوی خواهیم داشت . که به طور عمده به تاریخچه ، تعاریف، کاربردها وارتباط آن با انبار داده و OLAP خواهیم پرداخت. در پایان فصل مراحل فرایند کشف دانش از پایگاه داده­ها را ذکر کردیم که داده­کاوی یکی از مراحل آن است.

در فصل 2 یکی از شیوه­های داده­کاوی که از سبد خرید گرفته شده­ است توضیح داده شده است . در این فصل به شرح قوانین ارتباطی خواهیم پرداخت که در آن بعد از دسته­بندی الگوریتمها ، الگوریتم Apriori ( که یک الگوریتم پایه در این زمینه است ) و الگوریتم FP-Growth ( یک الگوریتم جدید میباشد) را با شرح یک مثال توضیح می­دهیم و در آخر آن دو را با هم مقایسه می­کنیم .

در فصل 3 مباحث وب­کاوی و متن­کاوی را که در بسیاری از مراجع جزء کاربردهای داده­کاوی به حساب می­آید شرح داده خواهد شد.

نظرات 0 + ارسال نظر
امکان ثبت نظر جدید برای این مطلب وجود ندارد.